Robust-BD Estimation and Inference for General Partially Linear Models
نویسندگان
چکیده
The classical quadratic loss for the partially linear model (PLM) and the likelihood function for the generalized PLM are not resistant to outliers. This inspires us to propose a class of “robust-Bregman divergence (BD)” estimators of both the parametric and nonparametric components in the general partially linear model (GPLM), which allows the distribution of the response variable to be partially specified, without being fully known. Using the local-polynomial function estimation method, we propose a computationally-efficient procedure for obtaining “robust-BD” estimators and establish the consistency and asymptotic normality of the “robust-BD” estimator of the parametric component βo. For inference procedures of βo in the GPLM, we show that the Wald-type test statistic Wn constructed from the “robust-BD” estimators is asymptotically distribution free under the null, whereas the likelihood ratio-type test statistic Λn is not. This provides an insight into the distinction from the asymptotic equivalence (Fan and Huang 2005) between Wn and Λn in the PLM constructed from profile least-squares estimators using the non-robust quadratic loss. Numerical examples illustrate the computational effectiveness of the proposed “robust-BD” estimators and robust Wald-type test in the appearance of outlying observations.
منابع مشابه
Robustness Property of Robust-BD Wald-Type Test for Varying-Dimensional General Linear Models
An important issue for robust inference is to examine the stability of the asymptotic level and power of the test statistic in the presence of contaminated data. Most existing results are derived in finite-dimensional settings with some particular choices of loss functions. This paper re-examines this issue by allowing for a diverging number of parameters combined with a broader array of robust...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملRobust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملADAPTIVE NEURO FUZZY INFERENCE SYSTEM BASED ON FUZZY C–MEANS CLUSTERING ALGORITHM, A TECHNIQUE FOR ESTIMATION OF TBM PENETRATION RATE
The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine penetration rate may reduce the risks related to high capital costs typical for excavation operation. Thus establishing a relationship between rock properties and TBM pe...
متن کاملRfit: Rank-based Estimation for Linear Models
In the nineteen seventies, Jurečková and Jaeckel proposed rank estimation for linear models. Since that time, several authors have developed inference and diagnostic methods for these estimators. These rank-based estimators and their associated inference are highly efficient and are robust to outliers in response space. The methods include estimation of standard errors, tests of general linear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 19 شماره
صفحات -
تاریخ انتشار 2017